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The reaction of readily available 1-substituted 2,3-allenols with

Br2, NBS, or I2 afforded the not-easily-available but syntheti-

cally useful 3-halo-3-alkenals or 2-halo-2-alkenyl ketones in

good yields via a sequential electrophilic interaction of X+ with

the allene moiety , a 1,2-aryl or proton shift, and a H+-

elimination process; the structures of the products were

established by X-ray diffraction study.

Although allenes had been considered as highly unstable for a long

period of time, recent observation of nice reactivities and

selectivities of allenes in organic synthesis has made their chemistry

a hot research area.1–3 However, the electrophilic addition of

allenes has not been well developed, mainly due to the fact that the

control of regio- and stereoselectivity is not easy.4 In this paper, we

wish to report the electrophilic interaction of 1-substituted 2,3-

allenols, which are easily available from a one-step high-yielding

reaction of propargylic bromides, aldehydes, and SnCl2,
5 with X+

leading to the formation of otherwise not easily available 3-halo-3-

enals or 2-halo-2-alkenyl ketones due to the great tendency of the

CLC bond to migrate from the b,c-position to the more stable

a,b-position.6

We have observed that introducing a sulfinyl, organosulfur, or

organoselenium functionality can control the regio- and stereo-

chemistry of the halohydroxylation of allenes.7,8 It has also been

reported that the Pd-catalyzed cyclization of 2,3-allenols will form

vinylic epoxides9 or dihydrofurans10 highly selectively depending

on the nature of the catalyst and the halides used. With our recent

observation that 2,3-allenoates could be cyclized directly to afford

butenolides,11 we started to explore the chemistry of mixing

1-phenyl-2-butyl-2,3-butadienol (1a) with Br2 to prepare vinylic

epoxide 3a directly in one step.12

The results in THF, toluene, or benzene were quite complicated

(entries 1–3, Table 1). However, when the reaction was conducted

in CH3CN, instead of the expected vinylic epoxide 3a, a b-bromo-

b,c-unsaturated enal with a structure shown as 2a was formed in

35% yield unexpectedly (entry 4, Table 1)! By screening the most

commonly used solvents, it was found that the same reaction in

CCl4 or CH2Cl2 afforded 2a in 67% and 60% yields, respectively

(entries 5 and 6, Table 1). Better results were achieved by running

the reaction in aqueous MeCN (MeCN : H2O 5 15 : 1) at rt

(entry 9, Table 1). Epoxide 3a was formed in , 5% yield, if any.

The ratios of MeCN/H2O are also important for a higher yield of

2a (compare entries 7–11, Table 1).

With the optimized reaction conditions in hand, we studied the

scope of this reaction with the typical results summarized in

Table 2. It can be concluded that 2,3-allenols with differently

substituted phenyl groups at the 1-position can be used to prepare

the 3-halo-3-enals in good yields. By introducing the allyl group

into the 2-position of the 2,3-allenols, halogenation of the allylic

CLC double bond was not observed, indicating the higher

reactivity of the allene functionality. For the synthesis of bromides,

both Br2 and NBS can be applied, however, the yields with NBS

are usually much higher than those with Br2 (compare entries 2/3,

7/8, 10/11 and 12/13, Table 2). The corresponding reaction with I2

can also occur smoothly to afford 3-iodo-3-enals 2j or 2k in good

to high yields (entries 14 and 15, Table 2). The structures of the

products were determined unambiguously by the X-ray diffraction

study of 2j (Fig. 1).13

A rationale for this interesting transformation is shown in

Scheme 1. The interaction of ‘‘X+’’ with the internal CLC bond of

the allene moiety would form intermediate 4, which would

undergo a 1,2-shift of the Ar group (R2 5 Ar) to open the

three-membered ring forming the cationic homoallylic alcohol
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Table 1 Reaction of 1-phenyl-2-(n-butyl)-2,3-butadien-1-ol (1a) with
Br2 under different conditions

Entry Solvent Temp (uC) t (h) Yielda of 2a (%)

1 THF 33 19 b

2 Toluene 33 19 b

3 Benzene 25 1 b

4 CH3CN 25 24 35
5 CH2Cl2 32 2 60
6 CCl4 32 2 63
7 CH3CN/H2O 5 4 : 1 32 1 68
8 CH3CN/H2O 5 8 : 1 32 2 65
9 CH3CN/H2O 5 15 : 1 25 0.5 77

10 CH3CN/H2O 5 60 : 1 30 1 60
11 CH3CN/H2O 5 15 : 1 230 1 50
a Isolated yield. b The reaction was complicated.
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intermediate 5.14 Release of H+ from 5 would form the final

3-halo-3-enals 2.

However, the corresponding reaction of 3-(n-butyl)penta-3,4-

dien-2-ol (6a) with X2 afforded the 1,2-H shift products 7a and 7b

highly selectively (Scheme 2). The migration of the CLC bond in 7a

and 7b was not observed.

3-Halo-3-enals are very useful building blocks in organic

synthesis due to the presence of the C–X bond, the CLC bond

and the CLO bond. The synthetic potential of this methodology

was demonstrated by the reactions of 2j as shown in Scheme 3.

With the coupling protocols of the C–I bond in 2j,15 1-alkynyl,

aryl, alkyl groups can be introduced into the 3-position; the

aldehyde functionality in 2j can be easily reduced with NaBH4 or

react with organometallic reagents to afford corresponding

alcohols 11j and 12j (Scheme 3).16
Fig. 1 Drawing of 2j. Only one of the two independent molecules in the

asymmetric unit is shown.

Scheme 1

Scheme 2

Table 2 Reaction of 2,3-allenols with X+a

Entry R1 R2 X2 t (h) Yield (%)b

1 n-C4H9 H Br2 0.5 77 (2a)
2 n-C4H9 p-CH3 Br2 0.5 73 (2b)
3 n-C4H9 p-CH3 NBSd,e 2 93 (2b)
4 n-C4H9 p-OCH3 Br2 1.5 73 (2c)
5 n-C4H9 m, p-OCH2O Br2 0.5 78 (2d)
6 allyl p-OCH3 Br2

c,d 1.5 57 (2e)
7 allyl p-CH3 Br2

c,d 1 52 (2f)
8 allyl p-CH3 NBSd,e 1 71 (2f)
9 C2H5 p-CH3 Br2 1.5 71 (2g)

10 C2H5 p-OCH3 Br2
d,e 1 80 (2h)

11 C2H5 p-OCH3 NBSd,e 0.7 88 (2h)
12 C2H5 m, p-OCH2O Br2 1.5 64 (2i)
13 C2H5 m, p-OCH2O NBSd,e 0.5 84 (2i)
14 n-C4H9 m, p-OCH2O I2 1 80 (2j)
15 C2H5 m, p-OCH2O I2 0.5 69 (2k)
a The reaction was conducted using 0.3–0.5 mmol of 2,3-allenols and
Br2, NBS, or I2 (2 equiv. unless otherwise stated) in MeCN (4 mL)
and H2O (0.27 mL). b Isolated yield. c 1.2 equiv. of Br2 were used.
d The reaction was conducted at 0 uC. e 1.2 equiv. of NBS were
used.

Scheme 3
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In conclusion, we have developed a sequential electrophilic

addition and 1,2-aryl or proton shift reaction of X+ (X = Br or I)

with 1-substituted-2,3-allenols forming 3-halo-3-enals or 2-halo-2-

alkenyl ketones efficiently. Due to the easy availability of the

starting compounds5 and the not-readily-available nature as well

as synthetic potential of these compounds, this method will be very

useful in organic synthesis. Further studies including the scope and

synthetic application of this reaction are being carried out in our

laboratory.
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